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Abstract—Previous work [13] suggests that tangled changes
(i.e., different change intents aggregated in one single commit
message) could complicate tracing to different change tasks
when developers manage software changes. Identifying links from
changed source code to untangled change intents could help
developers solve this problem. Manually identifying such links
requires lots of experience and review efforts, however. Unfortu-
nately, there is no automatic method that provides this capability.
In this paper, we propose AutoCILink, which automatically
identifies code to untangled change intent links with a pattern-
based link identification system (AutoCILink-P) and a supervised
learning-based link classification system (AutoCILink-ML). Eval-
uation results demonstrate the effectiveness of both systems: the
pattern-based AutoCILink-P and the supervised learning-based
AutoCILink-ML achieve average accuracy of 74.6% and 81.2%,
respectively.

Index Terms—Commit, Code change, Machine learning

I. INTRODUCTION

During software development and evolution, source code

changes are committed through version control systems (VCS)

such as Subversion and Git. When changes are committed,

the intents behind these changes are also documented in

commit messages by developers. Problems arise, however,

when changes are made in the same commit but for different

intents (i.e., tangled changes [13])—developers either ignore

or forget implementation details behind the changes when

different change intents are aggregated in one single commit

message [17]. Overlooking the individual change intents (i.e.,

one segment of change message sentences that is related to

one unique task in this commit) in commit messages can

lead to confusion, omissions and errors when developers

validate changes, locate bug reports, (re)assign bug reports

and trace changes to other software artifacts [1]. For example,

if one developer committed two bug fix tasks that are tangled

together, it could be hard for other developers to verify at

the code level if both bugs are fixed without knowing which

changed source code is related to which task. Therefore, it

is critical and non-trivial to extract untangled change intents

by slicing a commit message containing aggregated change

intents, and identify/recover links between changed source

code files and their untangled change intents—we speak of

code to untangled change intent links. Herzig et al. [13]

highlight the importance of this question by investigating the

frequency of tangled changes and how big the impact of

tangled changes is. Their investigation results confirm that

tangled changes should be avoided. Unfortunately, to the best

of our knowledge, no existing research has addressed the task

of identifying code to untangled change intent links.

State-of-the-art practices commonly identify links between

code changes and untangled change intents manually. How-

ever, this process is time-consuming, labor-intensive, and

requires a great deal of experience. First, developers may have

to review not only commit messages but also other software

artifacts such as issue reports and pull requests. Figure 1

shows an example from project gmail4j, in which individual

change intents described in the segmented commit message

of commit ae66810 need to be linked to the corresponding

changed source code files. In this example, to identify the link

between the changed source code file and the change intent

described in segmented commit message “Issue 13: quick
fix”, the developer starts by locating issue 13. The developer

notices that the change involves removing the package maven-
source-plugin. To learn where exactly this change is made, she

will need to go through all changed source code files before

realizing that the changed file ImapConnectionHandler.java
is linked to “issue 13: quick fix” since one of its imports

org.apache.maven.plugin is removed.

Although no one has addressed this linking task, one may

argue that Information Retrieval (IR)-based approaches such as

Latent Semantic Indexing (LSI), Vector Space Model (VSM),

Association-based approach (e.g., [3], [7], [10], [11], [22])

could be applied to generate links between commits and

software artifacts (e.g., bug reports, design documents, etc.)

by comparing the textual similarity between commits and soft-

ware artifacts. However, these approaches cannot adequately

address our task. The reason is that the changed entities

extracted from source code (e.g., identifier, comments, string

literals) could be very different from what is described in

commit messages and other related software documents (e.g.,

issue reports, pull requests, etc.). As an example, consider

Figure 1 again. The terms used to describe the change intent in

the commit message (i.e., “quick”, “fix”, “remove”, “plugin”,

etc.) are mostly different than the identifiers used in the

changed source code file (i.e., “org”, “apache”, “maven”,

“plugin”, “Abstract”, “Mojo”).

Motivated by this observation, we propose AutoCILink, a

novel method with a supporting tool for automatically iden-

tifying/recovering links between the untangled change intents

in segmented commit messages and the changed source code

files. To address the issue of one source code file being

changed for multiple intents, AutoCILink is designed to relate
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Fig. 1: An example of how software developers link changed source code files to untangled change intents

each changed file to one or more changed intents. Specifically,

we have designed two variants of AutoCILink. To simulate

the human reasoning process, we propose a pattern-based link
identification system (AutoCILink-P) that leverages manually

defined patterns to identify links between untangled change

intents and changed code files. Motivated by the successful

application of machine learning to software engineering tasks,

we develop a supervised learning-based link classification
system (AutoCILink-ML) to further understand the intents of

source code changes and their associations. AutoCILink-ML
identifies links between untangled change intents and code

changes by encoding the patterns introduced in AutoCILink-
P as features (regular expression features and vocabulary
features) and employing two novel features: (a) code import,
which considers changed imports from committed source code

files; and (b) untangled change intent count, which considers

the number of untangled change intents in a commit message.

The main contributions of this paper are:

• Novel task. To our knowledge we are the first to exam-

ine the task of automatically identifying links between

changed source code files and untangled change intents.

• New resources. We have annotated a new corpus with

links between untangled change intents and changed

source code from 19 projects and make this corpus

publicly available to stimulate research on this task.

• Novel pattern-based approach. We discover that (1)

some patterns are recurrently used by developers to

trace change intents and further build the links between

changed code files and untangled change intents; and

(2) related software documents (i.e., issue reports and

pull requests) frequently provide root causes of code

changes. We leverage these insights to design a pattern-
based link identification system (a.k.a. AutoCILink-P).

These patterns are designed with regular expressions that

(1) extract changed entities (i.e., classes that encapsulate

data and behavior [30]) from changed code files and (2)

compute the similarity between these changed entities

and the terms that appear in untangled change intents

in commit messages as well as in other related software

documents (i.e., issue reports and pull requests).

• Novel learning-based approach. To further our attempt

to automatically generate links from code changes to

untangled change intents, we have developed a supervised

learning based link classification syst (a.k.a., AutoCILink-
ML) using novel features specifically designed for this

task.

The rest of this paper is organized as follows. Section II

presents the motivating examples. Section III describes our

approach. Section IV discusses the empirical evaluation setup

and results. Section V describes threats to validity. Section

VI summarizes related works. Section VII concludes and

envisages future work.

II. MOTIVATING EXAMPLES

We motivate the development of AutoCILink via two ex-

amples. Figure 1 shows an example from project gmail4j
about how a developer reasons about the link between the

change intent described in the segmented commit message

“Issue 13: quick fix” and the changed source code file Imap-
ConnectionHandler.java via related issue report issue 13. To

reduce human efforts, if an IR-based approach (e.g., VSM) is

employed to automate the task, this link is unlikely to be re-

covered due to the differences in the entities used in the source

code ImapConnectionHandler.java and the terms used in the

segmented commit message1. AutoCILink-P follows a different

way to mimic the human reasoning process. First, commit

message ae66810 is automatically segmented into three parts,

each of which describes a different intent: (1) “Issue 13: quick
fix”; (2) “# moved the declaration of StringBuilder toString
inside toString() method”; and (3) “# added missing javadoc
to private long startTime instance variable”. In addition, Au-
toCILink relates issue 13 to (1) since (1) clearly indicates that

it is relevant to fixing issue 13. Then to find which segmented

commit message (i.e., (1), (2), or (3)) is linked to from one of

the changed files ImapConnectionHandler.java, AutoCILink-
P generates a regular expression using the extracted changed

entity “plugin” (i.e., ˆ.*\s*remove(.*?)plugin(.*))

from ImapConnectionHandler.java and applies it to each seg-

mented commit message and their related software documents.

1The terms extracted from “Issue 13: quick fix” are: “is-
sue”,“quick”,“fix”. The entities extracted from ImapConnectionHandler.java:
“org”,“apache”,“maven”,“plugin”,“abstract”,“mojo”,etc.
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Fig. 2: An example of AutoCILink-P “greedy” matching

At last, AutoCILink-P finds a link from ImapConnection-
Handler.java to segmented commit message (1) by matching

the mentioned regular expression in Comment 1 of (1)’s

related software document (i.e., issue 13): “I just removed the
plugin...” .

However, since regular expressions identify links based

on simple word matching between source code and the

text in a change intent, they could introduce errors. For

instance, Figure 2 shows an example from commit 18eb05d
in project activiti-crystalball, in which SimulationRun.java
can be erroneously linked to the sentence “Performance can
be increased by increasing maxWaitTime for job executor
too.” (i.e., false positive link in Figure 2) that is not the

actual change intent by matching the regular expression

ˆ.*\s*increase(.*?)job(.*). This regular expres-

sion is generated using the extracted changed entity “job” and

it matches with the supporting text in the intent description

“...increasing...job executor...” rather than the main topic of

the intent (i.e., “...increasing maxWaitTime...”). To overcome

this weakness, AutoCILink-ML is developed. By learning from

known links, each feature is weighted by AutoCILink-ML,

which can effectively reduce the negative effects imposed by

regular expressions.

III. APPROACH

A. Overview

To enable the automated tracing from changed source

code files to untangled change intents, we have designed

two variants of AutoCILink: pattern-based link identification
system (AutoCILink-P) and supervised learning-based link
classification system (AutoCILink-ML). The workflow of both

systems is shown in Figure 3. The subsequent sub-sections

elaborate the text preprocessing and methodology employed

by the two systems.

B. Text preprocessing

As shown in Figure 3, the text preprocessing component

seeks to accomplish three tasks:

1) Untangling change intents: We untangle change intents

in two steps. First, we employ the Stanford Tokenizer from

the CoreNLP toolkit [28] to split the commit message into

individual sentences. Then each sentence is further segmented

if multiple change intents are aggregated in one sentence. The

Fig. 3: AutoCILink system workflow

second step can be done when an additive transition word

is used2. For instance, the following sentence in a commit

message “enable proguard by default and correct small mis-
take in debug log” can be further split into two untangled

change intents: “enable proguard by default” and “correct
small mistake in debug log”. We manually verified that 87%

of the intents are correctly untangled by this procedure.
2) Building enriched untangled change intents: We lever-

age additional software documents related to the intent to

build an enriched untangled change intents. If a software

document (i.e., an issue report or a pull request) is related

to any untangled change intent in a commit, it will be

appended as supplemental description to the corresponding

intent. Since this relationship is not always explicitly provided

during software development and evolution, it is worthwhile to

automatically recover the missing relations by performing the

following analysis: Step 1: Pairing untangled change intents

and software documents. In the example shown in Figure 1,

AutoCILink groups three untangled change intents in commit

ae66810 with Issue 13 report into 3 distinct pairs; Step 2:
Similarity analysis. For each pair generated in Step 1, we

apply Vector Space Model (VSM) [37] to calculate the cosine

similarity score using Equation (1).

sim(i, d) = cos(i, d) =

∑
t∈T

ω(t, i, T )× ω(t, d, T )
√∑

t∈T
ω(t, i, T )2 ×

√∑
t∈T

ω(t, d, T )2

(1)

where t is a term, d is a software document, i is an

untangled change intent, T is a corpus of terms taken from

the commit messages and the software documents, ω(t, d) is

the weight of term t in software document d, and ω(t, i) is

the weight of term t in untangled change intent i. All terms

are extracted by tokenizing the corresponding textual content.

The weight of each term is calculated using Term Frequency

and Inverse Document Frequency (tf-idf ) (e.g., ω(t, d, T ) =
tf(t, d) × idf(t, T )), where tf(t, d) is the term frequency of

term t in software document d and Inverse document frequency

(i.e., idf(t, T ) = log |T |
|{d:t∈d}| ) distinguishes rare terms from

those common terms by giving more weight to rare terms in

2We apply an additive transition word list pre-defined in:
https://msu.edu/user/jdowell/135/transw.html#anchor1671187
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the corpus. Based on the similarity scores calculated in Step 2,

AutoCILink determines that a given pair of software document

and untangled change intent are related if sim(i, d) > 50%,

as Bacchelli et al. [31] indicate that using a 50% threshold

yields better results than using other thresholds.

3) Extracting terms and changed entities: Next, Au-
toCILink extracts (1) terms from an enriched untangled change

intents and (2) changed entities from changed source code

files. Terms are extracted by tokenizing each untangled change

intent and related software documents in the enriched un-

tangled change intent. Since entities can be referenced in

many different ways [31], AutoCILink extracts changed en-

tities from changed source code identifiers, inline comments

and string literals. Each entity is defined as a single noun

word that represents a class that encapsulate data and be-

havior [30]. Specifically, since developers compound words

through camel casing [31] (e.g., ObjectContainer is formed

from “object” and “container”) and underscore separator (e.g.,

TYPE END SIMULATION is formed from “type”, “end” and

“simulation”), these compounded words must be split into

separate entities. In addition, each word in inline comments

is tagged with its part-of-speech (POS) tag (a label that

is assigned to a word to indicate its syntactic function)

using the Stanford Log-linear Part-Of-Speech Tagger from

the CoreNLP toolkit [28]. All words tagged with noun POS

tags (i.e., NN, NNP, NNS, NNPS) are extracted as entities.

Terms and changed entities are not only preprocessed by

filtering common English stop words, but also stemmed using

Porter Stemmer ( [2], [34]) —a widely used algorithm that

heuristically converts a word to its stem.

C. Pattern-based Link Identification System (AutoCILink-P)

As shown in Figure 3, the pattern-based link identification
system (AutoCILink-P) operates in two steps;

1) Link identification using regular expression (AutoCILink-
P-R): Link identification using regular expression
(AutoCILink-P-R) is inspired by our observation that

entities are usually named by their roles and responsibilities

in system design [30].

Generating regular expressions. Given this observation, for

each changed entity extracted from changed source code

identifiers, inline comments and string literals (mentioned in

Section B-3), AutoCILink-P-R generates the regular expres-

sions based on the following two regular expression templates:

(1). ˆ.*\s*(<verb>)(.*?)<entity>(.*)

(2). ˆ.*\s*<entity>(.*?)(<verb>)(.*)

The intuition behind both templates is that in commit

messages and software document, the terms that indicate

changed entities could be separated from the governing verbs

(simulating active voice in template (1) and passive voice in

template (2)) by other characters (e.g., empty spaces, coma,

etc.) or describing words. For example, in “moved the declara-
tion of StringBuilder toString inside toString() method”, active

verb “moved” is separated from terms “String” and “Builder”,

which represents changed entities, by a sequence of words that

describes “String” and “Builder” (i.e, “the declaration of ”).

As shown in both regular expression templates, < verb >
represents an acting verb in an untangled change intent. We

define three kinds of verbs: reserved verbs, synonyms and

frequent verbs. Reserved verbs and synonyms are defined by

the nine change types in [1]. Each change type represents a

kind of change in source code entity roles or responsibilities

(i.e., add new features, fix bugs, improve existing features,

add code components, modify code components, delete code
components, deprecate code components, refactor code com-
ponents, modify code inline text). All reserved verbs are taken

directly from the verbs of various change types. As shown

above, there are seven reserved verbs for the nine change

types: “add” for add new features and add code components,

“modify” for modify code components and modify code in-
line text, “delete” for delete code components, “deprecate”

for deprecate code components, “refactor” for refactor code
components, “fix” for fix bugs, and “improve” for improve
existing features. To improve the likelihood of a match, we

additionally employ the synonyms of these reserved verbs.

The synonyms of each reserved verb manually identified based

on its synset (i.e., sets of cognitive synonyms) defined in the

WordNet [14] lexical knowledge base. Specifically, for each

reserved verb, we manually collect all its synsets based on the

intended meaning of the verb. For example, for reserved verb

“add”, we collect all the “synsets” for its intended meaning

“make an addition (to)”. Note that for each changed entity,

we generate regular expressions using all seven reserved verbs

from all possible change types and their synonyms.

In addition, AutoCILink-P-R leverages additional frequent

verbs beyond the seven reserved verbs to generate regular

expressions, because we observe that some verbs that are

related to the nine change types are neither reserved verbs

nor their synonyms. For example, the verb “update” is related

to improve existing features, which is neither a reserved verb

nor a synonym of the reserved verb “improve”. Based on

this observation, we mine verbs that most frequently occur

in commit messages. Specifically, we first POS-tag each term

in each commit message using the Stanford Log-linear Part-

Of-Speech Tagger. Then we extract all the terms tagged with

verb POS tags (i.e., VB, VBD, VBG, VBN, VBP, VBZ) and

rank them based on their term frequency across all commit

messages.

Applying regular expressions. We apply each generated

regular expression on the enriched untangled change intents. If

any match of the regular expression is identified in the enriched

intents, AutoCILink-P-R reports a link between the untangled

change intent and the changed source code file that contains

the changed entity in the regular expression.

2) Link identification using vocabulary similarity
(AutoCILink-P-V): Intuitively each changed source code

file should be linked to at least one untangled change

intent. If AutoCILink-P-R described in Section III-C-1 cannot

identify any link from the given changed source code file

to any untangled change intent, we identify the missing link
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based on the vocabulary similarity between each changed

source code file and enriched untangled change intents

(AutoCILink-P-V). The motivation behind AutoCILink-P-V
is that commit messages and software documents typically

elaborate code change details with similar textual information

with changed source code entities [2].

AutoCILink-P-V first computes the vocabulary similarity be-

tween enriched untangled change intents and changed source

code files, which includes the vocabulary similarity between

untangled change intent terms and changed source code en-

tities (i.e, sim(i, c)) and the vocabulary similarity between

terms in related software document (i.e., issue report or pull

request) and changed source code entities (i.e, sim(d, c)):

sim(i, c) =

∑
t∈V,e∈V

ω(t, i, V )× ω(e, c, V )
√∑

t∈V
ω(t, i, V )2 ×

√∑
e∈V

ω(e, c, V )2
(2)

sim(d, c) =

∑
t∈V,e∈V

ω(t, d, V )× ω(e, c, V )
√∑

t∈V
ω(t, d, V )2 ×

√∑
e∈V

ω(e, c, V )2
(3)

in which t is a term, i is an untangled change intent, d
is a related software document, e is a changed entity, c is a

changed source code file, V is a corpus of extracted terms and

entities, ω(e, c, V ) is the weight of changed entity e in changed

source code c in corpus V. Similar to ω(t, i, V ) and ω(t, d, V ),
ω(e, c, V ) is also calculated using the tf-idf approach.

In enriched untangled change intents, one untangled change

intent could be related to multiple software documents. As

a result, AutoCILink-P-V chooses the max value as the vo-

cabulary similarity between the untangled change intent and

changed source code file (i.e., sim(Link(i,c))), as shown

in Equation (4), in which the number of related software

documents (dx) is n:

sim(Link(i,c)) = max(sim(i, c),

n⋃

x=1

sim(dx, c)) (4)

To decide if there is a link or not, we set a threshold. The

threshold for each experiment is selected by using a devel-

opment set (details explained in Section IV-B). That is, when

sim(Link(i,c)) larger than selected threshold, AutoCILink-P-
V reports a link between the changed source code file and the

untangled change intent.

As we mentioned in Section II, AutoCILink-P may erro-

neously report certain links between changed source code

files and untangled change intents as regular expressions are

imprecise. To tackle this problem, we propose the supervised
learning-based link classification system.

D. Supervised learning-based link classification system
(AutoCILink-ML)

AutoCILink-ML operates in three steps:

1) Creating training instances: To train a link classifier to

identify links, we create training instances for each changed

source code and enriched untangled change intent pair in the

training dataset. We annotate each training instance as linked
or not linked depending on whether there is a link between

the pair or not. Each training instance is represented using the

following features:

Regular expression features are inspired by link identifi-
cation using regular expressions described in Section III-C-

1, which generates and uses regular expressions to identify

code to untangled change intent links. Specifically, we create

one binary feature for each such regular expression. Each

feature encodes the presence (value=1) or absence (value=0)

of the regular expression in the enriched untangled change

intent in the training set. In the example shown in Figure 2,

the untangle change intent in the commit message contains

one regular expression feature (i.e., the one encodes the pres-

ence of ˆ.*\s*increase(.*?)<entity>(.*)) having

the value 1. Unlike in AutoCILink-P, in AutoCILink-ML the

learning algorithm will have the flexibility to determine which

of the regular expressions to use. For instance, if a regular

expression is deemed useless, the learner can simply assign a

low weight to the corresponding feature.

Vocabulary features are motivated by link identification

using vocabulary similarity in Section III-C-2. Recall that

a link is identified when vocabulary similarity score of the

changed source code file and enriched untangled change intent

pair is greater than 50%. Specifically, we create three types

of vocabulary features: vocabulary pair features, vocabulary
similarity features and term unmatched features.

We use (TERM, ENTITY) pairs extracted from change intent

and code pairs to create vocabulary pair features. As described

in Section III-B-3, terms are extracted from enriched untangled

change intents and entities are extracted from changed source

code files. Each term and entity are paired to create a (TERM,

ENTITY) feature, whose value is 1 if the particular (TERM,

ENTITY) pair appears in the change intent and code pair

under consideration. Otherwise, its value is 0. Returning to

the example in Figure 2, one of the vocabulary pair features

created for the untangled change intent (“Implementation of
jobs for simulation process engine”) and changed source code

file (SimulationRun.java) pair is (process, job).
The vocabulary similarity features are created to encode the

vocabulary similarity scores between an enriched untangled

change intent and a changed source code file. We group the

similarity scores into ten ranges: [0, 10%), [10%, 20%), [20%,

30%), [30%, 40%), [40%, 50%), [50%, 60%), [60%, 70%),

[70%, 80%), [80%, 90%), [90%, 100%] and define ten binary

features on these ten ranges. The feature value is 1 if the

similarity score falls in the corresponding range. Otherwise,

the value is 0.

Finally, for each changed source code and enriched

untangled change intent pair, we create term unmatched
features, which encodes the percentage of unmatched
noun terms with changed entities in source code (i.e., the

percentage of noun terms that do not appear in the set of

words derived from the entities). Specifically, AutoCILink-ML
first obtains all nouns (i.e., the words tagged by the Stanford

Log-linear Parts-Of-Speech Tagger as NN, NNP, NNS,

NNPS) from the tokenized segmented commit message.

Then it calculates the percentage of noun terms that are
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Fig. 4: Average percentage of linked changed source code files

per untangled change intent count across all 19 projects

unmatched with changed entities. We define ten binary

features, each of which encodes the presence (value=1) or

absence (value=0) of the calculated percentage value in the

range of: [0%,10%); [10%,20%); [20%,30%); [30%,40%);

[40%,50%); [50%,60%); [60%,70%); [70%,80%);

[80%,90%); [90%,100%]. In the example in Figure 2,

there are 3 out of 7 (42.9%) noun terms (“time”, “job”,

“executor”) in the untangled change intent “Performance can
be increased by increasing maxWaitTime for job executor
too”3, which match with the changed entities extracted from

SimulationRun.java. Therefore, the feature representing range

[50%,60%) will have its value set to 1 since the percentage of

noun terms unmatched in changed entities (1-42.9%=57.1%)

falls in the range of [50%,60%).

Code import features are motivated by the fact that the

intent of a change in source code file may be affected by

the changes of its imported code modules (i.e., imported

class from the same project). We create 10 code import
features (by discretizing the [0,1] range into 10 equal-sized

intervals, similar to what was done for the term unmatched
features described above) to encode the percentage of terms

in the corresponding enriched untangled change intent that are

unmatched in each changed imported code module’s changed

entities. Similar to terms unmatched features, the feature value

is 1 if the calculated percentage falls in a specific range defined

above.

Untangled change intent count features are inspired by

our hypothesis that the less untangled change intents one

commit message can be segmented into, the more likely

each intent is linked to more changed code files in this

commit. For example, when there are ten changed source code

files but only one untangled change intent in one commit,

most likely all changed source code files are linked to this

single intent (i.e., percentage of linked changed code=100%).

As another example, if there are ten changed source code

files and ten untangled change intents segmented from one

commit, the average percentage of linked changed code will

be approximately 10% (i.e., 1/10=10%), with each untangled

change intent linked with one distinct changed source code

3The terms extracted from the untangled change intent after tokenization
are: “perform”,“increas”,“max”,“wait”,“time”,“job”,“executor”

file. Figure 4 empirically validates our hypothesis based on

data from 19 subject projects collected in the data preparation

step (Section IV-A). Specifically, Figure 4 plots the percentage

of changed source code files each untangled change intent is

linked to on average against the number of untangled change

intents in a commit message. As we can see, although there

are minor fluctuation when untangled change intent count=3

and 4, the overall trend is obvious: the more the untangled

change intents a commit message contains, on average the

lower percentage of changed source code files is linked to each

untangled change intent. Figure 4 shows that the percentage

drops from 96.8% (when untangled change intent count=1) to

38.4% (when untangled change intent count=6).

Given these results, we create the untangled change intent
count features, which are binary features that encode the

number of untangled change intents in each commit message.

The value of a feature is 1 if the commit message is segmented

into the corresponding number of untangled change intents4.

Otherwise its value is 0. For example, in Figure 1 the commit

message ae66810 is segmented into four untangled change

intents. Therefore, the training instances that AutoCILink-
ML creates for each changed source code file and enriched

untangled change intent pair in this commit set the value of

the feature four untangled change intents to 1.

2) Training and applying link classifier: We employ the

support vector machine (SVM) learning algorithm with Radial

Basis Function (RBF) kernel as implemented in the libSVM

software package [15] to train the link classifier. This binary

classifier determines whether the given untangled change in-

tent and changed source code file are “linked” or “not linked”.

After training, the resulting classifier can be used to label each

test instance. Test instances are created in the same way as the

training instances.

IV. EMPIRICAL EVALUATION

A. Data preparation

We randomly selected 19 open source software projects

of different types and domains hosted on GitHub5. The data

we collected for our experiments include all change commits,

issue reports and pull requests from the 19 projects. Table I

summarizes the details of these projects.

Given the dataset, we created a binary classification task,

where we seek to identify each pair of changed source code

file and enriched untangled change intent as “linked” or

“not linked”. Hence, for system training and evaluation, we

manually determined whether there was a link between each

pair of enriched untangled change intent and changed source

code file, as described below:

4Based on our study across all 19 projects, the number of untangled change
intents falls in the range of [1,7]. Thus 7 binary features are created.

5The 19 projects are: activiti-crystalball,androidkickstartr,deprecated-
avaje-ebeanorm-api,zoola,SiVi,semaphore manager,gmail4j,java-color-
loggers,java-semver,jdf-stacks-client,kornakapi,picketbox-cdi,sonar-scm-
stats,sonar-switch-off-violations,xml2csv,cascading-helpers,dasein-cloud-
gogrid, elasticsearch-facet-script,fest-guava-assert
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TABLE I: Dataset from 19 open source projects

Total # of projects 19
# of untangled change intents 572
# of changed source code files 2739
# of “linked” code-intent pairs 3025
# of “not linked” code-intent pairs 1288

1) Coding procedure: Two expert analysts, who are co-

authors of this paper, were asked to conduct the coding task.

First, one of the coders conducted a pilot study on a subset of

all the untangled change intents and changed source code file

pairs. The pilot study resulted in a list of preliminary coding

criteria to identify links between untangled change intent and

source code files. After that, this coder trained the other coder

with coding criteria in a session that involved open discussion.

To minimize subjectivity of coding, both coders coded all

code-intent pairs in the dataset. Each coded pair was verified

by both coders and disagreements were resolved through open

discussion.

2) Coding results: We measured the inter-coder agreement

between the two coders with Cohen’s Kappa (k) [24]. Coders

agreed on 86% (k=0.683, i.e., moderate agreement [25]) of

the cases and then resolved their disagreements via discussion.

Based on our analysis, the main causes of the disagreements

are omissions and misunderstandings in several cases that the

terms found in segmented commit messages (untangled change

intents) have different meanings in the changed source code

entities. For example, the word initial in untangled change

intent “initial Simulator implementation” from project activiti-
crystalball “initial” can be understood as “the first time”.

However, in the changed source code it actually means “the
fundamental”.

B. Experimental setup

1) Evaluation settings: To evaluate AutoCILink-ML, we ap-

ply leave-one-project-out cross validation. In each experiment,

we use 17 projects for training AutoCILink-ML, one project for

development (i.e., parameter tuning), and the remaining project

as our held-out test set. We repeat this experiment 19 times,

each time choosing a different project as our held-out test set.

This ensures that the entire dataset is used for evaluation. For

parameter tuning, we tune SVM’s regularization parameter C.

Intuitively, the larger the C value is, the higher the penalty

on training error is. We tune C that maximizes the average

accuracy (as discussed in Section IV-B-2) on the development

set. To evaluate AutoCILink-P, we apply it to the entire dataset.

In other words, results of both variants of AutoCILink are

obtained on the entire dataset.

2) Baseline Systems: Since this is a new task, there is no

existing system that we can employ as a baseline system.

Nevertheless, as mentioned in the introduction, one could con-

ceivably employ IR-based approaches as baselines for our task.

Consequently, we employ three IR-based baselines, namely

VSM [2], [6], LSI [4] and the Association-based approach

[3]. Recall that LSI is based on the Vector Space Model that

takes words appearing in a context into consideration. VSM

calculates the distance between terms from enriched untangled

change intents and entities from changed source code files.

Association-based approach learns the associations between

terms from enriched untangled change intents and the entities

from changed source code. Since each IR-based baseline

returns a similarity score for each test instance, we need

to employ a threshold to determine whether a test instance

should be classified as “linked” or “not linked”. Specifically,

a test instance whose similarity score is at least as large as

the threshold will be classified as “linked”. Otherwise, it will

be classified as “not linked”. To avoid giving an unfair ad-

vantage to AutoCILink whose learning-based variant employs

annotated training data, we use the same amount of annotated

training data for identifying the “best” threshold for each

IR-based baseline. Specifically, when evaluating an IR-based

baseline on a particular project, we apply the threshold that

achieves the highest accuracy on the remaining 18 projects.

We employ two additional baseline systems: the majority
classifier and the untangled intent count classifier. The Ma-
jority classifier takes a greedy approach in link identifica-

tion, simply classifying each test instance into the majority

class [23], which for our task means that each test instance

will be classified as “linked”. The untangled intent count
classifier is designed based on the assumption that the less

untangled change intents one commit message contains, the

more changed source code files each untangled change intent

in this commit will be linked to. Specifically, it first assigns a

random score between 0 and 1 to each test instance (code-

intent pairs). Then, a threshold is employed so that a test

instance is classified as “linked” if and only if its score is

below the threshold. The threshold is dependent on the number

of untangled change intents in the commit message the test

instance is asssociated with. Specifically, the threshold is set

as the reciprocal of the count of untangled change intents in

one commit message under consideration. For example, the

threshold for a commit containing one untangled change intent

commit is set as 1, while the threshold for a commit containing

two untangled change intents is set as 1/2.

3) Evaluation metrics: We compute accuracy, as well as

recall, precision, and F1-score on both “linked” and “not

linked” instances. The recall (R) on the “linked”/“not linked”

class is defined as the percentage of “linked”/“not linked”

instances in the test set that are correctly classified (i.e.,

Recall = TP
(TP+FN) ). The precision (P) on the “linked”/“not

linked” class is the percentage of code-intent pairs classified

as “linked”/“not linked” that are indeed correct “linked”/“not

linked” classifications (i.e., Precision = TP
(TP+FP ) ). The F1-

score (F) on the “linked”/“not linked” instances is the har-

monic mean of “linked”/“not linked” recall and precision

(i.e., F1-score= 2∗R∗P
(R+P ) )). Finally, we report Accuracy, which

is the percentage of code-intent pairs correctly classified (i.e.,

Accuracy = TP+TN
(TP+FP+FN+TN) ).
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TABLE II: Evaluation results of AutoCILink and baseline

approaches

Systems Linked Not linked Average
Avg.F1 Avg.F1 Accuracy

1 AutoCILink-ML 87.4 62.4 81.2
2 AutoCILink-P 83.4 40.2 74.6
3 LSI 73.2 32.0 64.3
4 VSM 78.4 36.2 70.4
5 Association-based 80.4 7.8 66.5
6 Majority 82.4 0.0 70.1
7 Untangled intent count 77.9 55.9 70.0

TABLE III: Paired t-test results on accuracy of AutoCILink-
ML vs other approaches accuracy

System 1 System 2 p value
1 AutoCILink-ML LSI <0.0001
2 AutoCILink-ML VSM 0.0002
3 AutoCILink-ML Association-based <0.0001
4 AutoCILink-ML Majority 0.0920
5 AutoCILink-ML Untangled intent count 0.0931
6 AutoCILink-ML AutoCILink-P 0.0030

C. Evaluation results

This section evaluates the effectiveness of AutoCILink by

addressing the four research questions.

RQ1. How effective is AutoCILink in linking changed code
to untangled change intents?

We compare the effectiveness of two variants of AutoCILink
systems (i.e., AutoCILink-ML and AutoCILink-P) with the five

baselines (i.e., the three IR-based systems, the majority clas-

sifier, and the untangled intent count classifier. Table II shows

the F1-scores of “linked” code-intent pairs, “not linked” code-

intent pairs and the accuracy of each system averaged over the

19 projects using leave-one-project-out cross validation. As we

can see, in terms of average accuracy, both AutoCILink variants

(rows 1–2) outperform the baseline systems (rows 3–7). In

particular, AutoCILink-ML achieves the best average accuracy

(81.2%).

Table II shows several additional interesting results. First,

we found AutoCILink-ML outperforms other systems on not

only the “linked” instances but also the “not linked” instances.

When compared with the five baseline systems, AutoCILink-
ML improves the “linked” F1-score by 5–14.2% and the “not

linked” F1-score by 6.5–62.4%.

In addition, we observe that AutoCILink-P also achieves

better average accuracy than the baseline systems. However, its

“not linked” F1-score is lower than that of the Untangled intent

count-baseline. We hypothesize that this could be attributed

to errors in finding matches via the regular expressions in

enriched untangled intents, where many of the “not linked”

code-intent pairs are misclassified “linked”. We will examine

this hypothesis as part of RQ2.

To determine whether the differences in average accuracy

between the best performer (i.e., AutoCILink-ML) system

and baseline systems are statistically significant or not, we

employ the two tailed paired t-test. To show the soundness of

TABLE IV: Evaluation results of AutoCILink-ML and

AutoCILink-P

AutoCILink Linked, Avg Not Linked, Avg Average
Model R P F1 R P F1 Accuracy
ML 81.7 94.0 87.4 79.0 51.6 62.4 81.2
P 90.8 78.4 83.4 36.3 68.1 40.2 74.6
P-R 89.8 67.5 75.8 31.0 69.1 37.3 67.9

choosing the two tailed paired t-test, we perform the Shapiro-

Wilk normality test [39] with the null hypothesis that the
performance of corresponding system is normally distributed.

The test result for each system (p > 0.05) cannot reject the null

hypothesis and the data of each system is normally distributed.

For each significance test, our null hypothesis is: there is
no performance difference between the two systems under
comparison. Following [38], the result of significant test is in-

terpreted as: (1) highly significant if p < 0.01; (2) significant if

0.01 ≤ p < 0.05; (3) moderately significant if 0.05 ≤ p < 0.1.

Otherwise, the difference is statistically indistinguishable. The

significance test results are shown in Table III (rows 1-5). Each

row shows the p value of AutoCILink-ML’s result compared to

one baseline system’s result. We conclude from these results

that AutoCILink-ML is more accurate than its peers with high

or moderate statistical significance.

RQ2. Which system is more accurate in linking changed
code to untangled change intents, AutoCILink-ML or
AutoCILink-P?

The first two rows of Table IV shows the results between

the two variants of AutoCILink, namely AutoCILink-ML and

AutoCILink-P. As we can see, AutoCILink-ML is considerably

more accurate than AutoCILink-P, with average accuracies of

81.2% vs 74.6%. To determine whether this improvement is

significant or not, we again employ a two tailed paired t-
test on these systems. Row 6 in Table III shows that the

improvement is highly significant. In addition, Table II shows

that AutoCILink-ML outperforms AutoCILink-P by 4% in

“linked” F1-score and by 22.2% in “not linked” F1-score.

To gain additional insights, we investigate the performance

of AutoCILink-ML and AutoCILink-P in terms of their recall

and precision in predicting “linked” and “not linked” instances,

respectively. Results are shown in Table IV. It is interesting

to see that although AutoCILink-P achieves better recall in

predicting “linked” instances (90.8%) and better precision in

predicting “not linked” instances (68.1%) than AutoCILink-
ML, it results in much lower precision in predicting “linked”

instances (78.4%) per project and recall (36.3%) in predicting

“not linked” instances per project. Again, we hypothesize that

this can be attributed to the “imprecision” of the regular

expression based system (AutoCILink-P-R), which tends to

identify code-intent links by searching for a match in the

enriched untangled change intents, compromising its precise-

ness in pinpointing the actual links. To test this hypothesis,

we evaluate the contribution of the regular expressions to

AutoCILink-P’s performance. Specifically, we obtained results

on the test set by running only “AutoCILink-P-R” (i.e., Step
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TABLE V: Feature ablation results in average accuracy

Iter 1 -Type 4 -Type 6 -Type 3 -Type 2 -Type 1 -Type 5
72.3 79.4 79.5 80.4 80.4 80.9

Iter 2 -Type 4 -Type 6 -Type 3 -Type 2 -Type 1
75.8 78.2 78.9 80.0 80.4

Iter 3 -Type 4 -Type 6 -Type 3 -Type 2
74.1 77.1 78.9 79.7

Iter 4 -Type 4 -Type 6 -Type 3
75.9 79.6 79.7

Iter 5 -Type 4 -Type 6
63.1 69.0

TABLE VI: Paired t-test results on AutoCILink feature selec-

tion

System 1 System 2 p value
AutoCILink-Type 4 AutoCILink-ML <0.0001
AutoCILink-Type 6 AutoCILink-ML 0.0397

1 of AutoCILink-P). These results are shown in the last row

of Table IV. As we can see, in comparison to AutoCILink-
ML, AutoCILink-P-R’s higher recall on the “linked” instances

and its higher precision on the “not linked” instances provide

suggestive evidence for our hypothesis.

RQ3. Which feature types have the largest impact on the
performance of AutoCILink-ML?

Recall that AutoCILink-ML employs six types of features:

Type 1: regular expression features; Type 2: vocabulary

pair features; Type 3: vocabulary similarity features; Type
4: untangled change intent count features; Type 5: code

import features; and Type 6: terms unmatched features. To

understand which feature type(s) have the largest impact on the

performance of AutoCILink-ML, we perform feature ablation

experiments in which we remove the feature types from the

system one-by-one.

We show the results of the ablation experiments in Table

V, where results are expressed in terms of average accuracy.

The top line of the table shows what the system that uses all

available features’ score would be if we removed just one of

the six feature types. So to see how our system performs if

we remove only the untangled change intent count features

(Type 4), we would look at the first row of results under

the column headed by -Type 4. The number here tells us

that the resulting system’s average accuracy is 72.3%. Since

AutoCILink-ML (when all feature types are used) achieves an

accuracy of 81.2% (see Table IV), the removal of the untangled

change intent count features costs the complete system 8.9%

points in accuracy.

From row 1 of Table V, we can see that removing Type 5

(code import features) yields a system with the best average

accuracy in the presence of the remaining feature types in

this row. For this reason, we permanently remove the Type

5 features from the system before we generate the results in

row 2. We iteratively remove the feature type that yields a

system with the best performance in this way until we get to

the last line, where only one feature type is used to generate

each result.

TABLE VII: Distribution of misclassified pairs of changed

source code and enriched untangled change intents

Percentage of Misclassified as
misclassification Linked Not linked

AutoCILink-ML 18.8% 617 175

Since the feature type whose removal yields the best system

is always the rightmost entry in a line, the order of column

headings indicates the relative importance of the feature types,

with the leftmost feature types being the most important

to performance and the rightmost feature types being least

important in the presence of other feature types. As we can

see, the most important features are Type 4 and Type 6, as

their removal results in a 18.1% and 12.2% drop in accuracy,

respectively.

We conduct the paired t-test to determine whether the

removal of either of these two types of features yields a system

that performs significantly worse than the system that employs

all six types of features. Similar to RQ1, we conduct the

Shapiro-Wilk test to show that the performance data yielded

by the system with certain types of features is normally

distributed. Results are shown in Table VI. Specifically, row 1

compares the system using all six types of features (System 2)

with the system that uses all but the Type 4 features (System

1), whereas row 2 compares the system using all six types

of features (System 2) with the system that uses all but the

Type 6 features (System 1). As we can see from the results,

the difference between the two systems in each of these two

experiments is statistically significant.

RQ4. What is the root cause of mistakes made by
AutoCILink-ML?

To shed light on how to improve the performance of

AutoCILink-ML in future work, we performed a comprehen-

sive error analysis on misclassified pairs of changed source

code and untangled change intents by the two variants of

AutoCILink system. Table VII lists the percentage of misclas-

sified instances and the number of test instances misclassified

as “linked” and “not linked” by AutoCILink-ML. We notice

that one typical error is the misclassification of a “linked”

code-intent pair as “not linked” by AutoCILink-ML, which

leads to relatively lower precision in predicting “not linked”

pairs. Based on our analysis, the main reason for this type

of misclassification is can be attributed to the inconsistent

definitions/ambiguity of certain terms used in commit mes-

sages and their related documents and the same ones used

in source code. For example, in the project androidkickstartr,

one change intent untangled from the commit message says:

“remove the canonical name constants”, where “name” means

“variable name”. However, this intent is erroneously linked

to changed source code file that contains an entity “name”6

which means “by which a thing is known”. To reduce this

kind of errors, word sense disambiguation would be helpful.

In WordNet [14], English words are grouped into sets of

6Extracted from changed source code identifier packageName

430



synonyms called “synsets”. As mentioned in Section III-C-1,

every meaning of a word is represented in a unique “synset”.

In this case, “synsets” features can be added to ensure the

unambiguous interpretation of the term and/or entity under its

own linguistic context.

V. THREATS TO VALIDITY

One main threat to internal validity was introduced in the

process of the manual coding of changed code to untangled

change intent links (Section IV-A-1). To minimize subjectivity,

we ensured that each changed code to untangled change intent

link was coded by two coders independently. We also defined

coding criteria and trained the coders via open discussion. To

minimize the subjectivity, inter-coder agreement is measured

to ensure the coding reliability.

External validity threats come from the generalization of

our results. To strengthen this validity, our dataset covers all

the changed source code, commit messages and their related

software document from 19 open source projects across differ-

ent types and domains. Nevertheless, the approaches proposed

in the paper can be easily generalized to other projects.

VI. RELATED WORKS

This section summarizes two categories of research that

AutoCILink is closely related to.

A. Analysis of commits and changed source code

Moreno et al. [5] examine the changed source code in

commits and use them to automatically generate release notes

with patterns. Hinton et al. [4] discover software release pat-

terns from documents in commits. Several approaches [1], [7]–

[9] are proposed to automatically generate commit messages

from changed source code. Corts-Coy et al. [1] and Linares-

Vasquez et al. [9] present automated tools to generate natural

language commit messages by extracting entities and commit

stereotypes from changed source code. Different from the code

to untangled change intent linking task, their research are

built upon the assumption that commit messages can’t reflect

all intents of source code changes. Buse et al. [7] present

an automatic approach to describe source code modifications

using symbolic execution and summarizations. Rastkar et al.
[8] propose an approach to describe the motivation of source

code changes with multi-document summarization technique.

D’Ambros et al. [17] present a tool to augment commits with

visual contexts of changes. Herzig et al. [13] analyze the

impact of source code changes and find that up to 15% of

bug fixes consist of multiple tangled changes. Dias et al. [35]

propose a novel approach to group related changed source code

together. Similarly, Kreutzer et al. [36] propose an approach to

automatically cluster changed source code. Murphy-Hill et al.
[18], [19] find that 30% of commits contain code refactorings

mixed with other code changes. Barnet et al. [40] introduce an

automatic technique for decomposing changesets according to

code reviews. Kawrykow et al. [41] and Kirinuki et al. [42]

present approaches to detect non-essential code differences and

tangled changes by mining historical changes. Some related

works [20], [21] analyze large commits and small source

code changes. Different from the perspective of views of

these approaches, AutoCILink links changed source code to

untangled change intents. We propose some patterns based on

domain knowledge to detect code to untangled change intent

links. In addition, a supervised learning-based approach is

proposed based on not only these patterns but also new features

extracted from untangled change intents, software documents

and changed source code files.

B. Linking commits to software artifacts

Nguyen et al. [3] propose an approach based on text

matching and association patterns to find links between bug

reports and changed source code. They not only extract text

features from bug reports but also from changed source code.

Wu et al. [10] present ReLink to automatically recover missing

links between bug reports and changed files by text similarity,

time intervals, bug owners and change committers. Sun et al.
[2] utilize non-source documents in commits to find missing

commit-issue links with a VSM model. Le et al. [7] generate

links between issue and commits with enriched commit mes-

sages that summarize the intents and detailed modifications

in commits. Sliwerski et al. [11] propose an approach to

identify links between issues and commits and then analyze if

commits induce further fix. Bird et al. [22] present LINKSTER
to provide query interfaces to locate possible links between

issues and commits. As mentioned, the difference between

other commit to software artifact link tasks and our task is that

our task focuses on the intents of source code changes instead

of software function or description of bugs. In this case,

an IR-based approach can’t resolve this task. So AutoCILink
does not rely on any IR-based approach. It instead proposes

a pattern-based link identification system and a supervised
learning-based classification system. Evaluation results show

that AutoCILink outperforms IR-based approaches on code to

untangled change intent links identification.

VII. CONCLUSIONS AND FUTURE WORK

We proposed the AutoCILink system, which comprises a

pattern-based approach and a learning-based approach, to

address the novel task of automatically link changed source

code files to untangled change intents. In experiments on

a newly annotated corpus from the repositories of 19 open

source projects with links between changed source code files

and untangled change intents, we showed that AutoCILink
outperformed all five baseline systems under comparison.

AutoCILink-P achieves 83.4% F1-score on “linked” code-

intent data, 40.2% F1-score on “not linked” data and an

average accuracy of 74.6%. AutoCILink-ML further improves

the performance and achieves 87.4% F1-score on “linked”

data and 62.4% F1-score on “not linked” data, and an av-

erage accuracy of 81.2%. Future work will further experiment

our systems on other software projects as well as explore

additional features for code to untangled change intent link

identification.
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