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ABSTRACT

Due to increasingly complex software design and rapid iterative

development, code defects and security vulnerabilities are preva-

lent in modern software. In response, programmers rely on static

analysis tools to regularly scan their codebases and find potential

bugs. In order to maximize coverage, however, these tools gener-

ally tend to report a significant number of false positives, requiring

developers to manually verify each warning. To address this prob-

lem, we propose a Transformer-based learning approach to iden-

tify false positive bug warnings. We demonstrate that our models

can improve the precision of static analysis by 17.5%. In addition,

we validated the generalizability of this approach across twomajor

bug types: null dereference and resource leak.

CCS CONCEPTS

• Software and its engineering → Software defect analysis; •

Computing methodologies→ Natural language generation;

Neural networks.

KEYWORDS

datasets, neural networks, gaze detection, text tagging

ACM Reference Format:

Anant Kharkar, Roshanak Zilouchian Moghaddam, Matthew Jin, Xiaoyu

Liu, Xin Shi, Colin Clement, and Neel Sundaresan. 2022. Learning to Reduce

False Positives in Analytic Bug Detectors. In 44th International Conference

on Software Engineering (ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA.

ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3510003.3510153

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510153

1 INTRODUCTION

Software defects (bugs) that go undetected during the development

process can cause software failure, resulting in financial and rep-

utational harm to companies and a host of problems for users of

buggy software. Developers often rely on static analysis tools to

scan their codebases and find potential bugs. Despite their bene-

fits, static analysis tools are not consistently used in many soft-

ware projects [3]. Previous work has attributed their inconsistent

usage to high false positive rates and ineffective presentation of

warnings [11].

Developing any static analyzer is a non-trivial task due to the

trade-off between precision and recall; it is challenging to report

only correct bugs (precision) while covering all bugs with a similar

pattern (coverage/recall). Balancing these two objectives manually

is difficult and can result in analyzers with high false positive rate

(low precision). Analyzers with high initial precision can also de-

grade in predictive performance as the nature of bugs changes over

time. Continuously updating and maintaining static analyzers to

handle concept drift can be costly [5].

Previous research has investigated various methods to improve

static analysis false positive rates. In particular, researchers have

explored eliminating bugs along infeasible paths using syntactic

model-checking [12]; eliminating all the bugs that are similar to a

false positive based on similarity of modification points [16]; and

using a two-staged error ranking strategy where false positive pat-

terns are learned after manual labeling in the first stage [22, 24].

Ourwork uniquely contributes to this line of priorwork by leverag-

ing state-of-the-art neural models to automatically refine the out-

put of static analyzers.

Beyond traditional rule-based tools, there has been significant

recent work leveraging machine learning for software bug and vul-

nerability detection in various languages, including C/C++ [13, 21],

Java [18], and JavaScript [19]. However, much like rule-based ana-

lyzers, these machine learning models often suffer from low preci-

sion when applied in real world settings. Another challenge with

some machine learning approaches is the need to develop new

models to capture new types of vulnerabilities. Unlike this line

of work, we do not use machine learning to detect bugs directly.

Instead, we leverage machine learning to augment existing static

analyzers. We believe this strategy yields the best of both worlds,

http://arxiv.org/abs/2203.09907v1
https://doi.org/10.1145/3510003.3510153
https://doi.org/10.1145/3510003.3510153


ICSE ’22, May 21–29, 2022, Pi�sburgh, PA, USA Anant Kharkar, Roshanak Zilouchian Moghaddam, Ma�hew Jin, Xiaoyu Liu, Xin Shi, Colin Clement, and Neel Sundaresan

where machine learning complements the capabilities of current

static analyzers.

To augment static analyzers, we explored several models, includ-

ing a feature based model and two neural models. Our feature-

based model includes a set of carefully handcrafted features ex-

tracted from source code. Our neural models were inspired by the

recent successes of transformer models in code search and docu-

ment generation [9] as well as code completion [23]. One of our

neural models learns from labeled data (DeepInferEnhance), while

the other is applied in a zero-shot setting without the need for fur-

ther training or finetuning (GPT-C [23]). We conducted an exper-

iment with all the models on bugs identified by Infer, an interpro-

cedural static analyzer that detects bugs in Java, C++, and C#. Our

results show that we can improve the precision of Infer’s analysis

by up to 17%.

2 RELATED WORK

We describe the prior work on static analyzers and the use of ma-

chine learning for bug detection.

2.1 Static Analysis-Based Bug Detection

Rule-based systems and static analyzers have been widely adopted

for detecting software bugs [1, 2, 27, 31]. However, one of the barri-

ers to consistent usage of static analyzers is their high false positive

rate [11]. Previous work has explored various ways of reducing

this false positive rate. For instance, Junker et al. [12] leveraged

syntactic model-checking to eliminate infeasible paths (program

slices). An implementation of their approach on Goanna, an static

analyzer for C/C++ programs showed that they could exclude the

majority of false positives. Muske, et al. [16] implemented a parti-

tioningmechanism to partition similar warnings based on themod-

ified variables and modification points. A whole partition is then

considered false positive once its leader is determined as false posi-

tive. Shen et al. [22] developed EFindBugs, which uses a two-staged

error ranking strategy to deal with the false positives issue in Find-

Bugs [4]. EFindBugs first reports warnings on a sample program.

Once the warnings are manually labeled, the tool learns what bug

patterns to eliminate on the second run against the user applica-

tion. Similarly, ALETHEIA learns users preferences from manual

labeling on a smaller set [24]. Our work uniquely contributes to

this line of prior work by exploring the use of state-of-the-art neu-

ral models to automatically refine the output of static analyzers by

removing false positives.

2.2 Learning-Based Bug Detection

Beyond rule-based tools, there has been significant recent work on

data-driven and machine learning approaches to detect software

bugs and vulnerabilities. For instance, Russell et al. [21] proposed

a machine learning method for detecting software vulnerabilities

in C/C++ code bases. Similarly, Choi et al. [7] trained a memory

neural network to detect a variety of buffer overruns in C-style

code. Li et al. [13] trained a recurrent neural network (RNN) to de-

tect two specific types of vulnerabilities related to improper use

of library/API functions. Bugram [28] leveraged n-gram language

models to identify low probability token sequences in code as bugs.

Pang et al. [18] trained a machine learning model to predict static

analyzer labels for Java source code. Finally, DeepBugs [19] trained

a classifier that distinguishes correct from incorrect code for three

classes of bugs (swapped function arguments, wrong binary opera-

tor, and wrong operand in a binary operation) in JavaScript. How-

ever, the majority of machine learning solutions suffer from low

precision when applied on real world settings. Another challenge

with somemachine learning approaches is the need to develop new

models to capture new types of vulnerabilities. By leveraging ma-

chine learning to augment existing static analyzers, our work cre-

ates the best of both worlds, where machine learning will comple-

ment the capabilities of current static analyzers to generate more

precise results.

8 static void Main(string[] args)

9 {

10 var returnNull = ReturnNull();

11 _ = returnNull.Value;

12 }

13

14 private static NullObj ReturnNull()

15 {

16 return null;

17 }

18

19 internal class NullObj

20 {

21 internal string Value { get; set; }

22 }

/Examples/NullDeref/Program.cs:11

error: NULL_DEREFERENCE pointer ’returnNull’ could be null

and is dereferenced at line 11, column 13.

Figure 1: An example of aNull Dereference detectedby Infer

3 INFER

Our false positive reduction approach can work with any static an-

alyzer for which labeled data is available. Our experiments specifi-

cally targeted Infer, an interprocedural static analyzer that is used

to detect a variety of bugs in Java and C++. The recent release of In-

fer# also added support for bug detection in C# projects. Infer uses

separation logic, a program logic for reasoning about memory ma-

nipulations, to prove certain memory safety conditions and create

program state summaries for each method in a code base. Infer’s

analysis examines multiple methods in order to identify bugs in

code.When analyzing eachmethod, Infer formulates pre- and post-

conditions that describe the impact of the method on the memory

state of the program. When analyzing a method invocation, Infer

uses the conditions of the callee to form logical predicates for the

caller. Thus, Infer analyzes the entire call stack of a program by

composing logical predicates from all nested callee methods. Fig-

ure 1 shows an example of a null dereference bug identified by

Infer.

We decided to focus on Infer for three reasons. First, unlike the

majority of common analyzers that only consider the context of a

single method (i.e. intraprocedural), Infer’s analysis is interproce-

dural and its context can stretch across several methods. Second,

as opposed to many analyzers that rely on developer annotations

to detect certain bugs, Infer’s analysis is automated and does not

rely on annotations. Finally, due to incremental change analysis,

Infer can scale well on large production codebases.
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136 private void dumpLog(File logFile, long startOffset, long endOffset, ArrayList<String> blobs) throws IOException {

137 Map<String, LogBlobStatus> blobIdToLogRecord = new HashMap<>();

138 final Timer.Context context = metrics.dumpLogTimeMs.time();

139 try {

140 dumpLog(logFile, startOffset, endOffset, blobs, blobIdToLogRecord);

141 long totalInConsistentBlobs = 0;

142 for (String blobId : blobIdToLogRecord.keySet()) {

143 LogBlobStatus logBlobStatus = blobIdToLogRecord.get(blobId);

144 if (!logBlobStatus.isConsistent) {

145 totalInConsistentBlobs++;

146 logger.error("Inconsistent blob " + blobId + " " + logBlobStatus);

147 }

ambry-tools/src/main/java/com.github.ambry/store/DumpLogTool.java:144

error: NULL_DEREFERENCE object ‘logBlobStatus‘ last assigned on line 143 could be null and is dereferenced at line 144.

Figure 2: An example of a false positive warning from Infer. Infer warns that logBlobStatus can be null. This occurs if blobId

is not a valid key of blobIdToLogRecord . The warning is incorrect, since blobId comes from blobIdToLogRecord’s key set.

Like other static analyzers, Infer is also prone to false positives.

Figure 2 shows an example, in which Infer reports that the variable

logBlobStatus can be null, since it is assigned by calling get() on

a map; if the key is not present in the map, get() will return null.

However, the key blobId comes from the keySet of the same map,

meaning the value must exist in the map and logBlobStatus can-

not be null. Infer is not able to recognize the coding convention of

iterating over a map’s key set and incorrectly triggers a null deref-

erence warning. Language models, which are trained to identify

patterns across a large corpus of code, can recognize such idioms.

This motivated us to turn to machine learning to detect false pos-

itives reported by Infer. Indeed, our model identifies this specific

warning as a false positive.

4 FALSE POSITIVE REDUCTION

False positive Infer warnings share common characteristics and

follow patterns in coding conventions, as described in the example

above. This motivated us to turn to machine learning as a means

of capturing these patterns and identifying false positive warn-

ings. We experimented with several models, including a feature-

based model and two transformer-based neural models. Below, we

present the data set we used for training and testing these models,

as well as the details of each model.

4.1 Data Collection

Our data set consists of 539 null dereference warnings generated

by running Infer on seven Java repositories. Null dereference bugs

occur when a pointer that can potentially be null is dereferenced.

To create a diverse dataset, we chose several open source projects

and two proprietary projects. The projects include back-end ser-

vice components (Ambry, Azure SDK, and Nacos), build plugins

(Azure Maven Plugins), and browser automation (Playwright). Ta-

ble 1 summarizes the projects in our dataset, including the num-

ber of total warnings and true positives reported by vanilla Infer.

Project A and Project B denote the proprietary projects.

Each warning was investigated and labeled as valid (true posi-

tive) or invalid (false positive) by experienced developers. The need

for manual labeling presents a bottleneck to scaling up to larger

data sets. In the end, the developers identified 392 of the warnings

as true positives (72.7% precision) and 147 as false positives. Pre-

cision for individual repositories varied between 16% to 90%; the

Table 1: Summary statistics of null dereference warnings.

Total warnings and true positives are as reported by vanilla

Infer.

Name Lines of Total True Precision

Code Warnings Positives

Project A 35,527 57 47 82.4%

Project B 66,346 33 30 90.9%

Ambry 138,947 25 17 68.0%

Azure SDK 3,555,286 343 272 79.3%

Playwright 21,094 18 3 16.7%

Nacos 62,443 37 13 35.1%

Azure Maven 23,995 26 10 38.5%

Plugins

Total 3,903,638 539 392 72.7%

lower end of this range can correspond to poor experience for de-

velopers of those projects. There is significant opportunity for ma-

chine learning to benefit the experience by improving precision.

For each warning, we record the following information:

• the label: whether the warning was legitimate or not

• the location of the warning: includes the file name and line

number where the warning occurred

• the code: this is the code snippet on the line of warning

• the error message: the error message produced by Infer

• the local context around the warning: consists of all lines of

code from beginning of the surrounding function to the line

of the warning.

• the non-local context: includes the content of functions that

were called in the current context.

The non-local context enables us to account for the interproce-

dural nature of Infer. To obtain interprocedural information, we

collect and use the content of certain methods invoked in the local

context that can impact the value of the null pointer. For example,

for some null dereference warnings, the null pointer originates as

the return value of a method; we retrieve the body of this method

as non-local context.

Figure 3 demonstrates the importance of non-local context. In-

fer reports that the variable datacenterToAdd assigned on line 461

(top) can be null. To investigate this, a developer must look into
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461 Datacenter datacenterToAdd = hardwareLayout.findDatacenter(dataCenterName);

462 List<Disk> disksForReplicas =

463 allocateDisksForPartition(numberOfReplicasPerDatacenter, capacityOfReplicasInBytes, datacenterToAdd,

464 attemptNonRackAwareOnFailure);

465 partitionLayout.addNewReplicas((Partition) partitionId, disksForReplicas);

466 System.out.println("Added partition " + partitionId + " to datacenter " + dataCenterName);

198 public Datacenter findDatacenter(String datacenterName) {

199 for (Datacenter datacenter : datacenters) {

200 if (datacenter.getName().compareToIgnoreCase(datacenterName) == 0) {

201 return datacenter;

202 }

203 }

204 return null;

205 }

ambry-clustermap/src/main/java/com.github.ambry.clustermap/StaticClusterManager.java:463

error: NULL_DEREFERENCE object ‘datacenterToAdd’ last assigned on line 461 could be null and is dereferenced by call to

‘allocateDisksForPartition(...)’ at line 463.

Figure 3: An example of an interprocedural bug detected by Infer. Infer reports that datacenterToAdd (top, line 461) can be null.

To determine if this is the case, an investigator must find the implementation of findDataCenter() (bottom), which is used to

assign the value of datacenterToAdd. Since findDataCenter() explicitly contains the line return null, datacenterToAdd can be

null and the warning is reasonable.

the findDatacenter method in a different file (bottom). Here, we

can see that findDatacenter can return null on line 204 if none

of the datacenters match the argument, meaning it is possible

for datacenterToAdd to be null when it is dereferenced. There-

fore, in order to determine whether this warning is correct, the

content of the callee method (findDatacenter) is necessary. Al-

though it is possible for a null pointer to originate from multiple

nested method calls, we found that in most cases, collecting the

immediate callee was sufficient.

4.2 Feature-Based False Positive Reduction

As a baseline, we extracted feature vectors fromour data and trained

a classifier to predict whether a warning is a false positive. Our fea-

tures included:

• whether the non-local context explicitly contains the line

return null;. If this line exists in non-local context, then

it is possible for the callee to return null, and the variable

that holds the return value in the caller can be null.

• whether a null-check method appears in the context of the

warning. For some Infer warnings, the dereferenced vari-

able is verified to be non-null earlier in the method using

special null-checkmethods (e.g. Objects.requireNonNull()).

Since these null-check methods belong to external libraries,

Infer is unable to understand their behavior, resulting in

false positive warnings.

• whether a dereferenced variable is a class field. In practice,

Infer’s logic makes errors when tracking the state of class

fields and often incorrectly treats them as nullable.

• whether an implicit cast of a wrapper class to a primitive

type occurs on the warning line. In our analysis, we real-

ized that implicit casts can be the cause of many null pointer

issues. For example, when the code includes a map object

with primitive-type values (e.g. HashMap with double val-

ues), the map’s values must instead be wrapper class objects

(Double) instead of primitives (double), since maps in Java

cannot take primitives. Values retrieved from the map are

often stored in primitive-type variables, causing an implicit

cast (see Figure 4). If the wrapper object is null, this cast

operation causes a null dereference.

We trained a logistic regression classifier on these features. Since

the limited size of our data prevents us from using a simple train-

test split, we instead used 5-fold cross-validation for training and

evaluation. In a realistic scenario, the model would not have access

to training data from the same project for which it is making pre-

dictions. However, as shown in Table 1, the projects that comprise

our dataset vary widely in the number of warnings, and attempt-

ing to separate repos across different folds would result in insuffi-

cient training data in several folds. To partially mitigate this issue,

we ensure that all warnings from the same file appear in the same

fold.

1 HashMap<String, Double> m = new HashMap<String, Double>();

2 m.put("Bla", new Double(1.0));

3 //below line will cause an implicit cast operation

4 double v = m.get("Bla");

Figure 4: Example of an implicit cast of awrapper class (Dou-

ble) to primitive type (double) in line 4. Calling get() on the

map m returns a Double, which is implicitly cast to double to

comply with the type of v.

4.3 Neural False Positive Reduction

Engineered features, while easy to understand, are inflexible and

cannot automatically learn new patterns from data. Deep learning

models, particularly transformers, are able to better capture the

complexities of modern source code. Transformers are deep neural

networks that leverage attention mechanisms to learn patterns in

sequential data, such as language. They contain billions of param-

eters and can leverage massive datasets to learn representations

of language patterns. They have achieved state-of-the-art results
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for applications in natural language processing (NLP) such as ma-

chine translation, question answering, and document summariza-

tion [26]. Transformers are usually pretrained on a large unlabeled

corpus and further finetuned on task-specific labeled data to per-

form classification or language generation.

The wealth of open source code available on GitHub has in-

spired researchers to train a variety of transformers on open source

code and finetune them to support many downstream tasks such

as code completion[23], documentation generation[9], automated

code review [25], software traceability [14], and code search using

natural language.

Two major categories of transformers are auto-generative mod-

els and auto-regressive models. Auto-generative models such as

BERT [8] are trained to reproduce their inputs, while auto-regressive

model produce the next token in the sequence. In this work, we

leverage two transformers to help reduce Infer’s false positive rate.

The firstmodel, DeepInferEnhance, is a customized version of Code-

BERTa: an auto-generative encoder model similar to RoBERTa [15].

The second model is GPT-C, an auto-regressive model with only

decoder layers (similar to GPT-2 [20] and GPT-3 [6]). Both models

require only source code as input, rather than any intermediate

code structure such as syntax trees or control flow graphs.

4.3.1 DeepInferEnhance. CodeBERTa is a pre-trained transformer

based on the RoBERTa [15] architecture and developed by Hug-

gingFace [30]. The model was pre-trained on CodeSearchNet [10]:

a multilingual source code corpus of 2 million functions (with com-

ments and docstrings) from GitHub. CodeSearchNet consists of

functions from Go, Java, JavaScript, PHP, Python, and Ruby. Code-

BERTa was inspired by the success of CodeBERT [9], an applica-

tion of the BERT architecture to source code. CodeBERT was also

trained on CodeSearchNet and yielded state-of-the-art results for

tasks such as code search and documentation generation. Further-

more, CodeBERT’s promising results in zero-shot settings showed

the power of its representations.

We decided to use themore lightweight and efficient CodeBERTa

architecture. However, wewere interested in applying Infer to both

Java and C# code, and C# was notably absent from CodeBERTa’s

training dataset. Therefore, we pretrained an identical CodeBERTa

model on a corpus of 2 million Java and C# functions that we col-

lected from GitHub. Like the original CodeBERTa, our model is

pretrained using a masked language modeling (MLM) objective.

Encoder-based transformers like CodeBERTa, which incorpo-

rate information from both sides of the current position, can learn

to create efficient representations of their entire input. Through

transfer learning, these representations can then be used to solve

more specific tasks. We sought to transfer our pretrained model’s

learned representations to the task of identifying false positive In-

fer warnings. Therefore, we added a sequence classification head to

thismodel in order to classifywarnings as true positive or false pos-

itive. We finetuned the model on our dataset of Infer warnings by

freezing all layers except for the classification head. The inputs for

finetuning are strings of code context, and the labels are boolean

indicators of valid or invalid warnings. Our final model consists of

a 6-layer encoder and 2-layer classification head, with a total of 83

million parameters. We call this model DeepInferEnhance.

4.3.2 GPT-C. Unlike auto-generative models, which learn repre-

sentations to reproduce their input, auto-regressive (generative)

models learn to create new text. GPT-3 is one example of such a

generative model [6]. Because of the scarcity of labeled Infer warn-

ings for supervised learning, we turned to generative models and

used code completion recommendations as a signal of the legiti-

macy of Infer warnings. Many null dereference warnings can be

resolved - even if sub-optimally - by introducing a null check be-

fore the dereference. Similarly, many resource leak bugs can be

fixed by explicitly releasing the leaked resource. If a generative

model recommends a null check or resource release, this may in-

dicate that the corresponding warning is indeed legitimate, since

the model deemed that such a fix is necessary. Our intuition is that

the model may have a fuzzy understanding that a null check or

resource release is required.

To generate these code recommendations, we use GPT-C [23], a

generative transformer based on the well-known GPT-2 [20]. This

model was designed and trained for code line completion and rep-

resents the state of the art in this field; it was implemented as part

of the IntelliCode Compose web service. This model is also multi-

lingual and was pretrained on C#, Python, C++, Java, JavaScript,

TypeScript, Go, PHP, Ruby, and C. GPT-C takes in a partially writ-

ten method body and uses multi-headed self-attention to predict

the next line. We use it in a zero-shot setting: unlike DeepInfer-

Enhance, we do not train GPT-C ourselves, but instead rely on its

pretrained parameters. We do not verify the syntactic correctness

of the generated code, but rather use it as a “fuzzy” signal only to

determine if a warning is valid or not. For null dereference warn-

ings, if the model generates a null check statement at a line before

a null pointer warning occurs, we consider that warning valid.

GPT-C is trained specifically for line completion, rather than

whole line generation. This means that, rather than generating a

full line of code from previous lines, GPT-C expects an incomplete

line of code at the end of its input and generates code to complete

this line. This incomplete trailing line is a prompt and consists of

several tokens at the beginning of the final line. For our objective

of predicting Infer warning validity, we provide specific prompts

to GPT-C for each warning type. For null dereferences, the input

prompts are the prefixes of 7 different null check statements (e.g.

if or Debug.Assert). For each prompt, we use GPT-C with beam

search to generate line completion recommendations. With a beam

size of 5, this results in 35 recommendations per warning. We also

prepend non-local context to the input where possible. Figure 5

shows an example input.

Each Infer warning has an associated file path and line number

that correspond to the method where the warning occurs; we call

this the target method. For both transformer models, the input to

the neural network includes the source code of the target method

up to (but not including) the line of the warning. For GPT-C, we

include two additional components: the non-local context method

body preceding the target method and a line completion prompt

immediately following the target method.
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201 for (Node dataNode : nodes) {

202 if (allocatedDisks.size() == numberOfReplicas) {

203 break;

204 }

205 Disk disk = dataNode.getDiskWithMostCapacity(replicaSize);

206 allocatedDisks.add(disk);

207 disk.freeCapacity = disk.freeCapacity - replicaSize;

public Disk getDiskWithMostCapacity(long replicaSize) {

Disk minDisk = null;

for (Disk disk : disks) {

if ((minDisk == null || minDisk.freeCapacity < disk.freeCapacity) && disk.freeCapacity >= replicaSize) {

minDisk = disk;

}

}

return minDisk;

}

public static void Strategy3(Datacenter dc, List<Partition> partitions, int numberOfPartitions, int numberOfReplicas,

long replicaSize) {

for (int i = 0; i < numberOfPartitions; i++) {

List<Node> nodes = dc.nodes;

Collections.shuffle(nodes);

List<Disk> allocatedDisks = new ArrayList<Disk>();

for (Node dataNode : nodes) {

if (allocatedDisks.size() == numberOfReplicas) {

break;

}

Disk disk = dataNode.getDiskWithMostCapacity(replicaSize);

allocatedDisks.add(disk);

if (

Figure 5: An example of a legitimate Infer warning (top) and the corresponding input to GPT-C (bottom). Infer reports that

disk, which is assigned by getDiskWithMostCapacity() (bottom) can be null and is dereferenced on line 207. The GPT-C input

is constructed by appending a prompt to the method body preceding this line, as well as prepending the non-local context

method getDiskWithMostCapacity() . Here GPT-C correctly predicts a null check and therefore this warning is regarded as

legitimate by the GPT-C based model.

5 EXPERIMENTS

We performed two experiments to better understand how these

models perform in a real-world setting. The first experiment, sum-

marized in Table 2, was focused on comparing effectiveness of our

feature-based and neural models. The second experiment focused

on verifying the generalizability of our neural approaches when

applied to a different bug type. Since our objective is to eliminate

false positives reported by Infer, our primary metric to evaluate

our models is the relative precision improvement over vanilla Infer.

We also measure recall with respect to Infer’s true positive warn-

ings: a recall of 100% means that all of the true positive warnings

from vanilla Infer were reported. By construction, none of the ap-

proaches in this work report new warnings beyond those origi-

nally reported by Infer.

Table 2: Performance of machine learning for removing

false positive null dereference warnings

Approach Precision Δ Precision Recall

Baseline 72.7% - 100%

Feature-Based 78.7% +8.26% 65.1%

DeepInferEnhance 83.7% +15.13% 88.3%

GPT-C 85.4% +17.47% 83.7%

5.1 Experiment 1: Comparing feature-based
and neural models

5.1.1 Feature-Based Model. The simplest data-driven approach to

identify false positive Infer warnings is to manually search for pat-

terns in the warnings. The handcrafted features we collected for

our logistic regression model capture the patterns that we discov-

ered from manual review of our dataset. This feature-based model

was able to improve Infer’s precision by 8%, but with significant

reduction in recall. Since source code can be inherently complex,

it is unsurprising that simple handcrafted features are insufficient

to identify false positive warnings.

5.1.2 DeepInferEnhance. Since handcrafted features cannot ade-

quately represent source code, we turned to deep learning to auto-

matically learn patterns in code that indicate the legitimacy of In-

fer warnings. We took a traditional supervised transfer learning ap-

proach, using our dataset of labeledwarnings to finetune our Deep-

InferEnhance model. The results show that this model greatly im-

proved precision and recall compared to the feature-based model.

Transformers are generally finetuned on much larger datasets

than the several hundred warnings we used. However, DeepInfer-

Enhance was still able to learn patterns that provided a significant

improvement in precision. One such pattern occurs when null is

explicitly passed as an argument to a method. Even if the method
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handles null arguments, Infer still reports a null dereference warn-

ing, which is often a false positive. DeepInferEnhance is able to

learn this pattern purely from the code itself.

5.1.3 GPT-C. DeepInferEnhance is able to boost vanilla Infer’s

precision, but requires labeled data. Since this data is expensive to

collect, we sought a solution that could forego supervised learning

altogether. Transformer models such as CodeBERT have shown

promising performance in zero-shot settings for source code. Our

approach is novel due to our interpretation of code completion rec-

ommendations by self-supervised generative models: recommen-

dations for null checks are a signal that the null dereference warn-

ing is legitimate. With this approach, GPT-C had the highest pre-

cision of our models, improving on Infer by relative 17.5%, with

slightly lower recall than DeepInferEnhance.

While analyzing the results from GPT-C, we identified several

patterns in the warnings that GPT-C predicts incorrectly. These

patterns included:

Insufficient or nonexistent non-local context Our investi-

gation revealed that when non-local context is unavailable or con-

tains insufficient information, GPT-C does not perform well. For

example, method calls belonging to an interface type cannot be re-

solved until runtime. Therefore, we cannot retrieve such methods

as non-local context. Similarly, non-local context can include get-

ter methods that return a class field; however, thesemethods do not

provide any information about the value the class fieldmay hold. In

the example in Figure 6, Infer warns that handlerMethod, which is

assigned using getHandlerMethod() , can be null. getHandlerMethod()

(middle) simply returns the handlerMethod class field (bottom). In

order to correctly determine if the local variable handlerMethod

can be null, we would need to collect not only the bodies of the

methods getHandlerMethod() and createMessagingErrorMessage() ,

but also the constructors and fields of DefaultAzureMessageHandler .

No reference to the target object Null dereference warnings

generally fall into two categories with respect to the target pointer.

For some warnings, the null pointer is represented by a variable in

the source code; for other warnings, the pointer is returned from

a method with no explicit variable to hold its value. The latter

case presents a problem for GPT-C recommendations: the nullable

pointer has no reference in the code before the line where thewarn-

ing occurs, which is not included in the input to the model. There-

fore, this pointer does not appear in the input to GPT-C, reducing

the chance that GPT-C recommends a null-check.

Excessive sensitivity to the input Several Infer warnings in a

single project can refer to similar code, often with the same target

variable or method. In such cases, if the instances are truly similar

and legitimate, all of the instances should be reported as bugs to

the end user. However, because GPT-C is very sensitive to minor

differences in the input sequence, it may report only a subset of

the warnings as legitimate. To enforce consistency, we group to-

gether warnings with the same target variable and label them all

according to a logical OR, where all warnings are predicted as le-

gitimate if GPT-C predicts any warning in the group as legitimate.

The results in Table 2 include this consistency postprocessing. Al-

ternatively, warnings could be grouped according to code similar-

ity metrics such as edit distance.

5.1.4 Overall Result. DeepInferEnhance and GPT-C offer a trade-

off. Our objective is to increase precision, for which GPT-C is best.

However, DeepInferEnhance has significantly better recall, captur-

ing 88% of legitimate bugs while still providing a 15% boost in pre-

cision over vanilla Infer. Because of its superior recall, we would be

more likely to recommend DeepInferEnhance to developers who

value coverage in addition to precision. However, this model re-

quires finetuning, whereas GPT-C offers the best precision and

moderate recall without the need for additional data or further

training.

5.2 Experiment 2: Verifying the
generalizability of neural approaches

To verify the generalizability of our neural approaches beyond

the null pointer bug, we evaluated our GPT-C model on Infer’s re-

source leak warnings. A resource leak happens when a program

does not release resources it has acquired. The below code snippet

shows an example of a resource leak warning, where an exception

in f.write(7) will cause the program to skip the f.close() state-

ment and leak the stream resource.
56 public static void foo () throws IOException {

57 FileOutputStream f = new FileOutputStream(new File("w"));

58 f.write(7); //an exception here will cause a leak

59 f.close();

60 }

In our target Java projects, Infer detected a total of 108 resource

leak warnings. Table 3 shows the summary statistics of the identi-

fied resource leaks (Infer did not detect any resource leaks in Am-

bry).

Table 3: Summary statistics of resource leak warnings.Total

warnings and true positives are as reported by vanillaInfer.

Name Lines of Total True Precision

Code Warnings Positives

Project A 35,527 6 2 33.3%

Project B 66,346 49 33 67.3%

Azure SDK 3,555,286 33 16 48.5%

Playwright 21,094 2 2 100 %

Nacos 62,443 7 2 28.6%

Azure Maven 23,995 11 7 63.6%

Plugins

Total 3,764,691 108 62 57.4%

Since this data set was not large enough to meaningfully fine-

tune DeepInferEnhance, we decided to only focus on our GPT-C

model, where no further training or finetuning is required. We

only had to adjust our prompting logic. For resource leaks, we use

prefixes (first three characters) of the method names close() and

release() as the prompts. If the leaked resource is assigned to a

variable, we also use this variable name as a prompt. Table 4 shows

the results of using GPT-C to remove false positives in resource

leak warnings.

As shown in the table, GPT-C can improve Infer’s precision by

5.5%. However, it fails to identify over a third of legitimate bugs.

One pattern in the missed bugs is that some leaked resources have
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17 public class DefaultAzureMessageHandler implements AzureMessageHandler {

18

19 @Nullable

20 private InvocableHandlerMethod handlerMethod;

21

22 private Class<?> messagePayloadType;

23

24 private String createMessagingErrorMessage(String description) {

25 InvocableHandlerMethod handlerMethod = getHandlerMethod();

26 StringBuilder sb =

27 new StringBuilder(description).append("\n").append("Endpoint handler details:\n").append("Method [")

28 .append(handlerMethod.getMethod()).append("]\n").append("Bean [")

29 .append(handlerMethod.getBean()).append("]\n");

30 return sb.toString();

31 }

56 public InvocableHandlerMethod getHandlerMethod() {

57 return handlerMethod;

58 }

Figure 6: An example of an Infer warning where non-local context does not provide enough information about the value of a

class field. Infer warns that handlerMethod can be null (top). getHandlerMethod() simply returns the handlerMethod class field

(bottom). But this is not enough to determine the legitimacy of this warning.

names or types, such as EntityNotFoundHttpResponse or ChangeFeedProcessorBuilderImpl ,

that do not clearly indicate that they are in fact resources, and

therefore should be released. Types that clearly indicate resources,

such as those that contain File or Stream in the name, are recog-

nized more often by GPT-C.

Table 4: Performance of machine learning for removing

false positive resource leak warnings

Approach Precision Δ Precision Recall

GPT-C 60.6% 5.56% 64.5%

6 DISCUSSION

Our GPT-C model improved Infer’s precision by 17.5% for null

dereferences and by 5.5% for resource leaks. However, it missed some

of the correct warnings that Infer detected, with a recall of 84%

for null dereferences and 65% for resource leaks. We identified sev-

eral patterns of false negative predictions, which resulted in the

reduced recall. One pattern occurred when the non-local context

was a class field getter method. These methods are often a single

return statement, which is not sufficient information for GPT-C

to make the correct prediction. One way to mitigate this problem

could be to include class fields and constructors as part of non-

local context. However, the current GPT-C model is only trained

for line completion using singlemethod bodies. Newer transformer

models for code, which use supplementary context in addition to

individual method bodies, can better leverage this context to cre-

ate more complete representations of the program state. Therefore,

future work should explore training an extended-context model

for code completion, as an evolution of the GPT-C model we used.

We expect that such a model would perform better in many down-

stream tasks, including for verifying true positive warning from

static analyzers.

Another class of warnings for which GPT-C did not perform

well were chained method calls (e.g. foo.bar().baz()). If a warn-

ing is triggered on a method call in the middle of a chain, GPT-

C cannot reasonably predict a null check. Since the intermediate

method call is not stored in a variable, we cannot prompt GPT-C to

predict a null check for the return value of that method call. One

way to mitigate this problem is to modify the source code to insert

a variable assignment for each method call in the chain. However,

a developer would only break the method chain for a null check

where necessary. Therefore, breaking the chain may create an ab-

normal code pattern that GPT-C will not recognize. Alternatively,

the variable assignment could be inserted for only one method in

the chain. For each method call in the chain, we could insert an

assignment, generate recommendations using GPT-C, and select

the recommendation with the highest confidence. However, we

decided on a much simpler approach to mitigate chained method

calls: simply trust Infer’s decision and predict such warnings as

legitimate bugs.

For any bug detection system, precision and recall have signif-

icantly different downstream impacts for developers. Low preci-

sion means that developers waste time analyzing many false pos-

itive warnings, while low recall means that some legitimate bugs

are not identified. Static analyzers have typically favored cover-

age and recall over precision, with the objective of maximizing the

number of reported legitimate bugs. However, in practice, low pre-

cision reduces developer adoption of analysis tools [11] due to the

time developers waste on investigating false positives. Prior work

has found that developers mostly use analysis tools in their spare

time and tend to fix warnings in short working sessions. There-

fore, they are primarily driven by time constraints when address-

ing bugs identified by static analyzers [17]. As a result, we chose

to focus on precision rather than recall; we believe presenting de-

velopers with higher quality warnings will lead to bugs actually

being addressed, rather than ignored due to a lack of confidence

or time constraints. However in certain cases, where recall is more

important, our models can be used to re-rank the warnings so that
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developers are presented withmore true positives first. This allows

us to present all warnings to developers while prioritizing likely le-

gitimate bugs.

We demonstrated the effectiveness of transformer models for

two bug types and one tool, but we believe this approach should

generalize to other languages and tools. Our experiment on re-

source leaks provides evidence of this. In addition, our GPT-C ap-

proach is not tied to a particular programming language, static an-

alyzer, or warning type. Because we use GPT-C in a zero-shot set-

ting, no further training is required. Customization may instead

be required through uniqueways of prompting GPT-C and specific

signals to seek in its outputs; adjusting prompts should be the only

change necessary to apply GPT-C to new bug types. For example,

one way to apply this technique to buffer overflow bugs in C/C++

could be to search for bounds checking recommendations. Even

DeepInferEnhance, which requires labeled data for finetuning, can

be expanded to additional programming languages by pretraining

on a larger and more diverse corpus.

In this work we applied large-scale transformers to further ver-

ify bugs that have already been localized by static analyzers. While

this means that our approach will not find bugs beyond those re-

ported by the static analyzers, it is a cost-effective way to lever-

age transformers for this problem. Large-scale transformer models

are expensive to train and evaluate, and using them to scan every

method or every line of a project can be prohibitively expensive.

By applying these models to resolve warnings that have already

been localized by a static analyzer, we ensure that transformers

are utilized in a cost-effective way. However, there may be other

ways to localize bugs and use transformers. For example, one can

leverage prior work on bug localization to determine buggy files

[29] and only examine those files as opposed to the entire program.

6.1 Threats to Validity

6.1.1 Dataset Size. Static analysis warnings are time-intensive to

triage, since each warning requires a detailed review of the source

code involved in the warning. It is expensive to collect a large

dataset of labeledwarnings, which is preferredwhen training trans-

formermodels. This is particularly impactful forDeepInferEnhance,

which requires labeled data for both finetuning and evaluation.

Although we used cross validation to compensate for the limited

dataset size, all of our approacheswould benefit from a larger dataset.

In order to scale the dataset, we must present warnings to project

owners for review. Through developer engagements, we found that

this raises a cold-start problem: in order to receive appropriate at-

tention and high-quality feedback, warnings must have sufficiently

high precision, or else developers may not engage with warnings

shared for labeling purposes.We believe that the precision improve-

ments of the approaches discussed here serve as a solution to this

cold-start problem, and will allow us to share warnings with a

wider set of projects to scale our dataset.

6.1.2 Evidence of Generalizability. Our approach of usingmachine

learning to augment and complement static analysis is designed

generically to benefit any analyzer. However, in this study, we fo-

cus on one analyzer (Infer) and two categories of bugs (null deref-

erence and resource leak) for one language (Java). To gain wider

adoption among developers of diverse projects, our approach must

demonstrate benefits across additional languages and bug types.

Our experimentswith resource leaks are our first attempt to demon-

strate this. We plan to apply and evaluate our approach to C#, as

well as additional languages, as the next step for expanding our

approach.

6.2 Data Release

Our dataset consists ofwarnings from Infer for various open source

and proprietary software projects. Source code from proprietary

projects was made available to us solely for research purposes.

Since we do not own this data, we cannot release it publicly. We

intend to release data from open source projects after we have

worked with each project owner to resolve the issues, or otherwise

verify with the owners the safety of releasing bug or vulnerability

data.

7 CONCLUSION

Rule-based bug detectors and static analyzers have been widely

adopted for detecting security vulnerabilities, functional bugs, and

even performance issues. However, building an analyzer is non-

trivial because of the difficulty of balancing precision and coverage:

reporting only correct bugs and ensuring that all similar bugs are

reported.

The majority of existing analyzers favor higher coverage to en-

sure completeness, and therefore they produce more false positive

warnings. However, frequent false positive warnings are one of the

main barriers to wider adoption of static analyzers in the software

industry; this problem cannot be solved by the analyzers them-

selves. To close this gap, we augmented static analyzers with a

variety of machine learning models. We experimented with both

feature-based and neural models for false positive reduction. Our

experiments on Infer, awell-known interprocedural static analyzer,

showed that leveraging GPT-C in a zero-shot setting can improve

the precision of null pointer warnings by 17.5% and resource leak

warnings by 6%.

One immediate direction for future work is to experiment with

more warning types and languages to further verify the generaliz-

ability of our approach. Another direction involves training trans-

formers with broader context. For instance, one may include the

imports, constructors, class fields, and superclasses (in cases of in-

heritance) as part of the context while training. We expect this

broader context to increase transformer effectiveness in general,

and especially in zero-shot settings to augment other code ana-

lyzers. A third direction is to explore whether a generative trans-

former similar to GPT-C can be used in conjunction with a static

analyzer to suggest fixes for some or all the bugs.
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